### ANALYTICAL REPORT

Prepared by Roy F. Weston, Inc.

Cornell Dubilier Electronics S. Plainfield, NJ

August 1997

EPA Work Assignment No. 2-262 WESTON Work Order No. 03347-142-001-2262-01 EPA Contract No. 68-C4-0022

> Submitted to S. Burchette **EPA-ERTC**

K. Robbins

Task Leader

Date

V. Kansal

Analytical Section Leader

Date

E. Gilardi

Project Manager

Reviewed by: M. Barkley

Analysis by:

Prepared by:

G. Karustis

**REAC** 

Kiber

\2262\DEL\AR\9708\REPORT

211020

# Table of Contents

| Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page ! | Number   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | .1`.     |
| Case Narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 1        |
| Summary of Abbreviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 3        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : .    |          |
| Section I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,      |          |
| Analytical Procedure for PCBs in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 4        |
| Analytical Procedure for PCBs in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 6        |
| Analytical Procedure for Lead and Cadmium in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 8 %      |
| Analytical Procedure for Lead and Cadmium in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 9        |
| Results of the Analysis for PCBs in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 10       |
| Results of the Analysis for PCBs in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 11       |
| Results of the Analysis for Lead and Cadmium in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Table 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 13       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Table 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 14       |
| Results of the Analysis for Lead and Cadmium in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Taule 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 age  |          |
| Constant T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |          |
| Section II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| ONIOG Com DCD-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 15       |
| QA/QC for PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 16       |
| Results of the Surrogate Recoveries for PCBs in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to the contract of the contrac | Page   | 17       |
| Results of the MS/MSD Analysis for PCBs in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . –    | 18       |
| Results of the Surrogate Recoveries for PCBs in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Table 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 19       |
| QA/QC for Lead and Cadmium in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T11 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Page   | •        |
| Results of the QC Standard for Lead and Cadmium (Air)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 20       |
| Results of the Laboratory Control Standard for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m 11 0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D      | 21       |
| Lead and Cadmium (Air)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 21       |
| Results of the Media Spike/Media Spike Duplicate Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m:11 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D      | 22       |
| for Lead and Cadmium in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Table 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 22       |
| Results of the Reagent Spike Analysis for Lead and Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 22       |
| in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Table 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 23       |
| QA/QC for Lead and Cadmium in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 24       |
| Results of the Analysis of the Laboratory Control Standard for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ ′    |          |
| Lead and Cadmium in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 25       |
| Results of the Duplicate Analysis for Lead and Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page   | 26       |
| Results of the Matrix Spike Analysis for Lead and Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Table 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page   | 27       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| Section III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| the first of the second of the | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | -        |
| Communications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | 28'      |
| Chains of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | . 29     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |
| Appendix A Data for Lead and Cadmium in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _      | G 250 01 |
| Appendix B Data for Lead and Cadmium in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   |          |
| Appendix C Data for PCBs in Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | G 318 01 |
| Appendix C Data for PCBs in Dust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page   | G 441 01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |

Appendices will be furnished on request.

#### Introduction

REAC, in response to ERTC WA # 2-262, provided analytical support for environmental samples collected at the Cornell Dubilier Electronics Site in S. Plainfield, NJ as described in the following table. The support also included QA/QC, data review and the preparation of a report summarizing the analytical methods, results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP #1008 and are summarized in the following table:

| COC #** | Number<br>of<br>Samples | Sampling<br>Date | Date<br>Received | Matrix        | Analysis | Laboratory |
|---------|-------------------------|------------------|------------------|---------------|----------|------------|
| 03968   | 4                       | 6/9/97           | 6/13/97          | Vacuum Dust   | Pb, Cd   | Kiber      |
| 03968   | 14                      | 6/9/97           | 6/13/97          | Concrete Dust | Pb, Cd   | Kiber      |
| 08342   | 12                      | 6/5/97           | 6/6/97           | Air           | Pb, CD   | REAC       |
| 08343   | 12                      | 6/5/97           | 6/6/97           | Air           | PCB      | REAC       |
| 08400   | 4                       | 6/9/97           | 6/11/97          | Vacuum Dust   | PCB      | REAC       |
| 08400   | 14                      | 6/9/97           | 6/11/97          | Chip Dust     | PCB      | REAC       |

COC # denotes Chain of Custody number

#### Case Narrative

#### Lead and Cadmium in Air Package G 250

The data were examined and were found to be acceptable.

#### PCB in Air Package G 318

The end of sequence calibration check standard of 6/19/97 exceeded the acceptable QC limits for tetrachloro-m-xylene, decachlorobiphenyl and peaks one and two of Aroclor 1248. The data are not affected.

The end of sequence calibration check standard of 6/19/97 exceeded the acceptable QC limits for all five peaks of Aroclor 1248. The data are not affected

The percent recoveries of the surrogate decachlorobiphenyl exceeded the acceptable QC limits for sample 499 (Field Blank). The data are not affected.

\2262\DEL\AR\9708\REPORT

#### PCB in Dust Package G 441

Because the analyses were run more than 50 days beyond the extraction date, values should be regarded as estimated. Original samples were re-extracted. There is no significant difference in the results.

The continuing calibration check standard CRD3A21A.D exceeded the acceptable QC limit for decachlorobiphenyl (35%). The data are not affected.

The continuing calibration check standard CRD3A01A.D exceeded the acceptable QC limit for decachlorobiphenyl (29%). The data are not affected.

The continuing calibration check standard CRD3A24A.D exceeded the acceptable QC limit for decachlorobiphenyl (34%). The data are not affected.

The end of sequence calibration check CRD3A28A.D exceeded the acceptable QC limits for five peaks of Aroclor 1254. The data are not affected.

Because of the presence of Aroclor 1248 and Aroclor 1254 at ppm concentrations, the samples required high dilutions and the surrogates were not recovered. The data are not affected.

Lead and Cadmium in DustPackage G 290

The data were examined and were found to be acceptable.

# Summary of Abbreviations

| AA             | Atomic Absorption                                                                         |
|----------------|-------------------------------------------------------------------------------------------|
| B              | The analyte was found in the blank                                                        |
| BFB            | Bromofluorobenzene                                                                        |
| BPQL           | Below the Practical Quantitation Limit                                                    |
|                |                                                                                           |
| C              | Centigrade  (Surpressed Table) this value is from a diluted comple and was not calculated |
| D              | (Surrogate Table) this value is from a diluted sample and was not calculated              |
| D:             | (Result Table) this result was obtained from a diluted sample                             |
| Dioxin         | denotes Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans and/or        |
| OI D           | PCDD and PCDF                                                                             |
| CLP            | Contract Laboratory Protocol                                                              |
| COC            | Chain of Custody                                                                          |
| CONC           | Concentration                                                                             |
| CRDL           | Contract Required Detection Limit                                                         |
| CRQL           | Contract Required Quantitation Limit                                                      |
| DFTPP          | Decafluorotriphenylphosphine                                                              |
| DL             | Detection Limit                                                                           |
| · Table        | The value is greater than the highest linear standard and is estimated                    |
| EMPC           | Estimated maximum possible concentration                                                  |
| ICAP           | Inductively Coupled Argon Plasma                                                          |
| ISTD           | Internal Standard                                                                         |
| J              | The value is below the method detection limit and is estimated                            |
| LCS            | Laboratory Control Sample                                                                 |
| LCSD           | Laboratory Control Sample Duplicate                                                       |
| MDL            | Method Detection Limit                                                                    |
| MQL            | Method Quantitation Limit                                                                 |
| MI             | Matrix Interference                                                                       |
| MS             | Matrix Spike                                                                              |
| MSD            | Matrix Spike Duplicate                                                                    |
| MW             | Molecular Weight                                                                          |
| NA             | either Not Applicable or Not Available                                                    |
| NC             | Not Calculated                                                                            |
| NR             | Not Requested                                                                             |
| NS             | Not Spiked                                                                                |
| % D            | Percent Difference                                                                        |
| % REC          | Percent Recovery                                                                          |
| PQL            | Practical Quantitation Limit                                                              |
| PPBV           | Parts per billion by volume                                                               |
| QL             | Quantitation Limit                                                                        |
| RPD            | Relative Percent Difference                                                               |
| RSD            | Relative Standard Deviation                                                               |
| SIM            | Selected Ion Mode                                                                         |
| TCLP           | Toxic Characteristics Leaching Procedure                                                  |
| U ·            | Denotes not detected                                                                      |
| m <sup>3</sup> | cubic meter kg kilogram µg microgram                                                      |
| L              | liter g gram pg picogram                                                                  |
| m <b>L</b>     | milliliter mg milligram                                                                   |
| $\mu$ L        | microliter                                                                                |
| *              | denotes a value that exceeds the acceptable QC limit                                      |
|                | Abbreviations that are specific to a particular table are explained in footnotes on that  |
|                | table                                                                                     |
| Revision       | ı 3/7/97                                                                                  |

#### Analytical Procedure for PCBs in Air

#### **Extraction Procedure**

The entire wipe was spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl, and was sonicated with hexane. The combined extracts were concentrated to 3.0 mL.

#### Gas Chromatographic Analysis

The extract was analyzed for PCBs using simultaneous dual column injections. The analysis was done on an HP 5890 GC/ECD system, equipped with an HP 7673A automatic sampler, and controlled with an HP-ChemStation. The following conditions were employed:

First Column DB-608, 30 meter, 0.53mm fused silica

capillary, 0.83  $\mu$ m film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150°C for 1 minute

7°C/min to 265°C 18 min at 265°

Second Column Rtx-1701, 30 meter, 0.53mm fused silica

capillary,  $0.50 \mu m$  film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150° C for 1 minute

7°C/min to 265°C 18 min at 265°

The gas chromatographs were calibrated using 5 Aroclor 1254 standards at 250, 500, 1000, 2000, and 5000  $\mu$ g/L. The response from each mixture were used to calculate the response factors (RF) of each analyte. The average RF was used to calculate the concentrations of PCB in the samples. Quantification was based on the DB-608 column (signal 1), and identity of the analyte was confirmed using the Rtx-1701 column (signal 2). A fingerprint gas chromatogram was run using each of the seven Aroclor mixtures.

The PCB results, listed in Table 1.1, were calculated from the following formula:

$$C_u = \frac{DFxA_uxV_t}{RF_{ave}xV_i}$$

where

 $C_u$  = Concentration of analyte ( $\mu g/100 \text{ cm}^2$ ).

DF = Dilution Factor
A<sub>u</sub> = Area or peak height
V<sub>t</sub> = Volume of sample (mL)
RF<sub>ave</sub> = Average response factor
V<sub>i</sub> = Volume of extract injected (μL)

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where.

 $A_u = Area'$  or peak height

and

$$RF_{ave} = \frac{RF_1 + \dots + RF_n}{n}$$

where

n = number of samples

Revision 7/11/94

#### Analytical Procedure for PCBs in Dust

#### Extraction Procedure

The dust samples were extracted by the Soxhlet method. Thirty grams of sample was spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl, 30 g anhydrous sodium sulfate and Soxhlet extracted for 16 hours with 300 mL 1:1 hexane: acetone. The extract was concentrated to 5.0 mL.

#### Gas Chromatographic Analysis

The extract was analyzed for PCBs using simultaneous dual column injections. The analysis was done on an HP 5890 GC/ECD system, equipped with an HP 7673A automatic sampler, and controlled with an HP-CHEM STATION. The following conditions were employed:

First Column DB-608, 30 meter, 0.53mm fused silica

capillary, 0.83 µm film thickness

Injector Temperature 250° C

Detector Temperature 325° C
Temperature Program 150°C for 1 minute

7°C/min to 265°C 18 min at 265°

Second Column Rtx-1701, 30 meter, 0.53mm fused silica

capillary, 0.50 µm film thickness

Injector Temperature 250° C
Detector Temperature 325° C

Temperature Program 150° C for 1 minute

17°C/min to 265°C 18 min at 265°

The gas chromatographs were calibrated using 5 PCB standards at 250, 500, 1000, 2000 and 5000  $\mu$ g/L. The results from each mixture were used to calculate the response factor (RF) of each analyte and the average Response Factor was used to calculate the concentration of PCB in the sample. Quantification was based on the DB-608 column (signal 1) and the identity of the analyte was confirmed using the Rtx-1701 column (signal 2). A fingerprint chromatogram was run using each of the seven Aroclor mixtures; calibration curves were run only if a particular Aroclor was found in the sample

The PCB results, listed in Table 1.2, are calculated by using the following formula:

$$C_u = \frac{DFxA_uxV_t}{RF_{ave}xV_txWxD}$$

where

 $C_{ij}$  = Concentration of analyte (mg/Kg)

W = Weight of sample (g)
D = Decimal percent solids

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where

A<sub>u</sub> = Area or peak height

and

$$RF_{ave} = \frac{RF_1 + ... + RF_n}{n}$$

where

n = number of samples

Revisión 7/11/94

#### Sample Preparation

Each wipe sample was transferred to a clean 100 mL beaker and prepared according to reference method NIOSH 7105. The samples were thoroughly mixed with 5 mL concentrated nitric acid and heated on a hot plate until the volume was reduced to 0.5 mL. Additional nitric acid and hydrogen peroxided were added during heating to complete digestion of the wipe pad. After digestion, the samples were allowed to cool to room temperature, transferred to 25 mL volumetric flasks and diluted to 25 mL with ASTM Type II water. The samples were analyzed for all lead and cadmium, by USEPA SW-846, Method 7000 (Atomic absorption) or Method 6010 (Inductively Coupled Argon Plasma-ICAP) procedures.

A reagent blank, reagent blank spike, media blank and media blank spike were carried through the sample preparation procedure for each analytical batch of samples processed. One matrix spike (MS) and one matrix spike duplicate (MSD) sample (prepared using blank wipes) were also processed for each analytical batch or every 10 samples.

#### Analysis and Calculations

The instruments were calibrated and operated according to SW-846, Method 7000/6010 and the manufacturers operating instructions. After calibration, initial calibration verification (ICV), initial calibration blank (ICB) and quality control check standards were run to verify proper calibration. The continuing calibration verification (CCV) and continuing calibration blank (CCB) were run after every ten samples to assure proper operation during sample analysis.

The metal concentrations in solution, in micrograms per liter ( $\mu g/L$ ) were taken from the read-out systems of the AA and ICAP instuments. The results (in micrograms per wipe,  $\mu g/wipe$ ) were obtained by externally correcting read-outs for final digestion volume.

Final concentrations, ( $\mu g/wipe$ ) were given by:

```
\mug metal/wipe sample = Ax(V/1000)xDF
```

where:

A = Insrument read-out (μg/L)
V = final volume of processed sample (mL)
DF = Dilution Factor (1.00 for no dilution)

For samples that required dilution to be within the instrument calibration range, DF is given by:

```
DF = (C+B)/C

where:

B = acid blank matrix used for dilution (mL)

C = sample blank aliquot (mL)
```

The results of the analysis are listed in Table 1.3.

#### Analytical Procedure for Lead and Cadmium in Dust

The subcontract laboratory determined the lead and cadmium concentrations in the samples by preparing them according to USEPA Method 3050 and analyzing them according to USEPA Method 6010. Both procedures are found in SW-846. The results of the analysis are listed in Table 1.4.

Table 1.1 Results of the Analysis for PCBs in Air WA # 2-262 Cornell Dubilier Electronics

| Sample ID<br>Location<br>Volume (L)          | PBLK060                               | 069701            | Colu<br>/ Back :               | 332<br>mbia<br>Storage<br>50 | Columb<br>Mid Wo                      | 334<br>ia/ Shelf<br>ork Area<br>50 | Columb                                  | ch Sheif            | Colu            | 338<br>mbia<br>ge Bin<br>80 |
|----------------------------------------------|---------------------------------------|-------------------|--------------------------------|------------------------------|---------------------------------------|------------------------------------|-----------------------------------------|---------------------|-----------------|-----------------------------|
|                                              | Conc.<br>µg                           | MDL<br>µg         | Conc.<br>µg/m3                 | MDL<br>µg/m3                 | Conc.<br>µg/m3                        | MDL<br>µg/m3                       | Conc.<br>µg/m3                          | MDL<br>µg/m3        | Conc.<br>µg/m3  | MDL<br>µg/m3                |
| AROCLOR 1016<br>AROCLOR 1221                 | U                                     | 0.3<br>0.5        | 77<br>U                        | 2.6<br>0.5                   | 12<br>U                               | 2.6<br>0.5                         | 18<br>U                                 | 5.2<br>0.5          | 33<br>U         | 4.6<br>0.5                  |
| AROCLOR 1232<br>AROCLOR 1242                 | ี บา<br>> บ                           | 0.3<br>0.3        | Ü                              | 0.3                          | U<br>U                                | 0.3<br>0.3                         | Ü.                                      | 0.3                 | Ü               | 0.3<br>0.3                  |
| AROCLOR 1248<br>AROCLOR 1254<br>AROCLOR 1260 | U<br>U                                | 0.3<br>0.3<br>0.3 | 2<br>U                         | 2.6<br>0.3<br>0.3            | 5<br>U<br>U                           | 2.6<br>0.3<br>0.3                  | 6<br>U<br>U                             | 5.2<br>0.3<br>0.3   | 12<br>U<br>U    | 4.6<br>0.3<br>0.3           |
|                                              | · · · · · · · · · · · · · · · · · · · |                   |                                |                              |                                       | 1                                  | • • • • • • • • • • • • • • • • • • • • | , e e e             |                 |                             |
|                                              |                                       |                   |                                |                              |                                       |                                    | ·                                       |                     |                 |                             |
| Sample ID<br>Location<br>Volume (L)          | 0034<br>Colum<br>Back R<br>960        | bia/<br>loom      | 003<br>Columb<br>20 Baci<br>96 | ia/ Pole<br>k Room           | 003<br>Robald<br>Near B               | o/ Pole<br>Ireaker                 | 003<br>Robald<br>In Side E              | / Shelf<br>Bay Door | 003<br>Truck Fo | enceline                    |
| 100                                          | Conc.<br>µg/m3                        | MDL<br>µg/m3      | Conc.<br>µg/m3                 | MDL<br>µg/m3                 | Conc.<br>µg/m3                        | MDL<br>µg/m3                       | Conc.<br>µg/m3                          | MDL<br>µg/m3        | Conc.<br>µg/m3  | MDL<br>µg/m3                |
| AROCLOR 1016                                 | 10                                    | 2.6               | 16                             | 5.2                          | 3.7                                   | 5.2                                | ` 0.6                                   | 0.3                 | ' U ; .         | 0.3                         |
| AROCLOR 1221<br>AROCLOR 1232                 | U                                     | 0.5<br>0.3        | U                              | 0.5<br>0.3                   | U                                     | 0.5<br>0.3                         | U<br>U                                  | 0.5<br>0.3          | U<br>U          | 0.5<br>0.3                  |
| AROCLOR 1242                                 | ·ŭ                                    | 0.3               | Ŭ                              | 0.3                          | Ü                                     | 0.3                                | Ü                                       | 0.3                 | 7. Ü            | 0.3                         |
| AROCLOR 1248                                 | 5                                     | 2,6               | 7                              | 5.2                          | 2.3                                   | 5.2                                | 0.4                                     | 0.3                 | 0.2 J           | 0.3                         |
| AROCLOR 1254<br>AROCLOR 1260                 | U                                     | 0.3<br>0.3        | U                              | 0.3<br>0.3                   | U                                     | 0.3<br>0.3                         | U                                       | 0.3<br>0.3          | U,              | 0.3<br>0.3                  |
| . 1                                          |                                       |                   |                                |                              | · · · · · · · · · · · · · · · · · · · |                                    | <del>*</del>                            | -                   |                 |                             |
|                                              | 7                                     | •                 | ,                              |                              |                                       | •                                  |                                         | 1.1                 |                 | :                           |
| Sample ID<br>Location<br>Volume (L)          | 0035<br>Roadway<br>960                | Corner            | 095<br>Field                   |                              | 095<br>Lot B                          |                                    |                                         |                     |                 |                             |
| 1                                            | Conc.<br>µg/m3                        | MDL<br>µg/m3      | Conc.                          | MDL<br>ng                    | Conc.                                 | MDL<br>ng                          |                                         |                     |                 |                             |
| AROCLOR 1016<br>AROCLOR 1221<br>AROCLOR 1232 | U<br>U<br>U                           | 0.3<br>0.5<br>0.3 | U<br>U<br>U                    | 250<br>500<br>250            |                                       | 250<br>500<br>250                  |                                         |                     | · · · · · ·     |                             |
| AROCLOR 1242<br>AROCLOR 1248<br>AROCLOR 1254 | U                                     | 0.3<br>0.5<br>0.3 | U                              | 250<br>250                   | U                                     | 250<br>250                         |                                         |                     |                 |                             |
| AROCLOR 1254<br>AROCLOR 1260                 | 0.2 J<br>U                            | 0.3               | U                              | 250<br>250                   | Ü                                     | 250<br>250                         |                                         | , , , ,             |                 |                             |

2262\DEL\AR\9708\ALL

Table 1.2 Results of the Analysis for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics

Based on dry weight

| Client ID SB Location Percent Solid Conc Analyte mg/k | LK06119701 |                 | 9889 A              |                | 890 A        | \ OS           | 9891 A       | 0989           | 92 A         |
|-------------------------------------------------------|------------|-----------------|---------------------|----------------|--------------|----------------|--------------|----------------|--------------|
| Conc                                                  | 100 .      | 2 31411131      | ia Composite<br>100 |                | Composite    | Robalo         | Composite    | Norpak C       |              |
|                                                       | . MDL      | Conc.<br>mg/kg  | MDL<br>mg/kg        | Conc.<br>mg/kg | MDL<br>mg/kg | Conc.<br>mg/kg | MDL<br>mg/kg | Conc.<br>mg/kg | MDL<br>mg/kg |
| Aroclor 1016 U                                        | 0.04       | U               | 830                 | · U            | 1300         | Ü              | 130          | U              | 4.2          |
| Aroclor 1221 U                                        | 0.08       | Ū <sup>".</sup> | 1700.               | Ū.             | 2500         | U              | 270          | · U            | 8.3          |
| Aroclor 1232 U                                        | 0.04       | U               | 830                 | U              | 1300         | U              | 130          | · U            | 4.2          |
| Aroclor 1242 U.                                       | 0.04       | Ú               | 830                 | U ·            | 1300         | U,             | 130          | U              | 4.2          |
| Aroclor 1248 U                                        | 0.04       | 4500            | 830                 | 5200           | 1300         | 360            | 130          | 16             | 4.2          |
| Arocior 1254 U                                        | 0.04       | 15000           | 830                 | 16000          | 1300 -       | 2500           | 130          | 81             | 4.2          |
| Aroclor 1260 U                                        | 0.04       | Ú               | 830                 | U.             | 1300         | U              | -130         | U 🏦            | 4.2          |

| Client ID<br>Location<br>Percent Solid | Chip           | 94 A<br>1 Top<br>00 | Chip           | 895 A<br>1 Bottom<br>100 | Chip           | 896 A<br>5 2 Top<br>100 |                | 897 A<br>2 Bottom<br>100 |                | 98 A<br>3 Top<br>30 |
|----------------------------------------|----------------|---------------------|----------------|--------------------------|----------------|-------------------------|----------------|--------------------------|----------------|---------------------|
| Analyte                                | Conc.<br>mg/kg | MDL<br>mg/kg        | Conc.<br>mg/kg | MDL<br>mg/kg             | Conc.<br>mg/kg | MDL<br>mg/kg            | Conc.<br>mg/kg | MDL<br>mg/kg             | Conc.<br>mg/kg | MDL<br>mg/kg        |
| Aroclor 1016                           | U              | 4200                | U              | 4200                     | U              | 83                      | υ`             | 4.2                      | U              | 83                  |
| Aroclor 1221                           | U              | 8300                | U              | 8300                     | ·U             | 170 🕖                   | , U.           | 8.3                      | U              | 170                 |
| Aroclor 1232                           | U -            | 4200 -              | U              | <b>4200</b>              | Û              | 83                      | U              | 4.2                      | U T            | ∖83                 |
| Arocior 1242                           | U              | 4200                | Ü              | 4200                     | U              | 83                      | U.             | 4.2                      | U <sup>r</sup> | 83                  |
| Aroclor 1248                           | 21000          | 4200                | 19000          | 4200                     | 190            | 83                      | 42             | 4.2                      | 400            | 83                  |
| Aroclor 1254                           | 57000          | 4200                | 41000          | 4200                     | 590            | 83                      | . 81           | 4.2                      | 870            | 83                  |
| Aroclor 1260                           | u              | 4200                | U              | 4200                     | Ù              | 83                      | Ü              | 4.2                      | Ü              | 83                  |

Table 1.2 (Cont) Results of the Analysis for PCBs in Dust
WA # 2-262 Cornell Dubilier Electronics
Based on dry weight

| Client ID<br>Location<br>Percent Solid | Chip 3         | 943 A<br>Bottom<br>00 | Chip           | 344 A<br>o 4 Top<br>100 |                | 2345 A<br>4 Bottom<br>100 |                | 2346 A<br>ip 5 Top<br>100 | Chip 5         | 47 A<br>Bottom<br>00 |
|----------------------------------------|----------------|-----------------------|----------------|-------------------------|----------------|---------------------------|----------------|---------------------------|----------------|----------------------|
| Analyte                                | Conc.<br>mg/kg | MDL<br>mg/kg          | Conc.<br>mg/kg | MDL<br>mg/kg            | Conc.<br>mg/kg | MDL<br>mg/kg              | Conc.<br>mg/kg | MDL<br>mg/kg              | Conc.<br>mg/kg | MDL<br>mg/kg         |
| Aroclor 1016                           | Ú              | 83                    | U              | 1700                    | <u> </u>       | 2100                      | U              | 42                        | ່. ນໍ່ ,       | 17.                  |
| Aroclor 1221                           | U.             | 170                   | U,             | 3300                    | U,             | 4200 🐔                    | U              | 83                        | U              | 33                   |
| Aroclor 1232                           | U              | 83                    | Ù              | 1700                    | U              | 2100                      | - U .          | 42                        | U              | 17                   |
| Aroclor 1242                           | U ·            | · 83                  | · U :          | 1700                    | U              | 2100                      | · U            | 42                        | Ū              | 17                   |
| Aroclor 1248                           | 320            | 83                    | 28000          | 1700                    | 31000          | 2100                      | 150            | 42                        | 94             | 17                   |
| Aroclor 1254                           | 530            | 83                    | 17000          | 1700                    | 15000          | 2100                      | 200            | 42 .                      | 100            | 17                   |
| Aroclor 1260                           | U              | 83                    | U              | 1700                    | U              | 2100                      | . u            | 42                        | · U            | 17                   |

| 1                     | and the second second |                | •              |                   |                |                |                |                 |
|-----------------------|-----------------------|----------------|----------------|-------------------|----------------|----------------|----------------|-----------------|
| Client ID<br>Location | Chip                  | 348 A<br>6 Top | Chip           | 349 A<br>6 Bottom | Chip           | 350 B<br>7 Top | Chip 7         | 351 A<br>Bottom |
| Percent Solid         | . 1                   | 00 .           |                | 100               | ( )            | 100            | 10             | 00,             |
| Analyte               | Conc.<br>mg/kg        | MDL<br>mg/kg   | Conc.<br>mg/kg | MDL<br>mg/kg      | Conc.<br>mg/kg | MDL<br>mg/kg   | Conc.<br>mg/kg | MDL<br>mg/kg    |
| Aroclor 1016          |                       | 170            | U              | 83                | 11             | 6.1            | 11             | 47              |
|                       |                       |                | U              |                   |                |                | U .            | 17              |
| Arocior 1221          | $\sim$ U              | 330 :          | U              | 170               | U              | 12             | U ;            | 33              |
| Arocior 1232          | U                     | 170            | U.             | 83                | U              | 6.1            | U              | 17              |
| Aroclor 1242          | U,                    | 170            | U              | . 83              | U              | 6.1            | Ù              | 17              |
| Aroclor 1248          | 1800                  | 170            | 540            | 83                | . 23           | 6.1            | 48             | . 17            |
| Aroclor 1254          | 1000                  | 170            | 250            | 83                | 73             | 6.4            | 58             | 17              |
| Aroclor 1260          | U                     | 170            | , U            | 83                | U              | 6.1            | U,             | 17              |
|                       |                       |                |                |                   |                |                |                |                 |

Table 1.3 Results of the Analysis for Lead and Cadmium in Air WA # 2-262 Cornell Dubilier Electronics

| Client ID: Lo | ocation                    |         | (L)  | Conc  | DL     | Conc       | DL "         | Conc  | DL    | Cono              | DI        |
|---------------|----------------------------|---------|------|-------|--------|------------|--------------|-------|-------|-------------------|-----------|
|               |                            |         |      | µg/m³ | µg/m³  | µg/filter  | µg/filter    | hā/m³ |       | Conc<br>µg/filter | pg/fitter |
| 00331 C       | olumbia/Back Storage       |         | 960  | 0.054 | 0.0052 |            |              | 0.971 | 0.052 |                   |           |
|               | olumbia/Shelf Mid Work an  | ea      | 960  | 0.037 | 0.0052 | <b>-</b> ; | -            | 0.578 | 0.052 |                   | •         |
|               | olumbia/3cd Mid Bench Sh   |         | 960° | 0.021 | 0.0052 | •          | <b>-</b>     | 0.117 | 0.052 |                   |           |
|               | olumbia/Storage Bin by Bre | ak Room | 960  | 0.011 | 0.0052 | •          |              | 0.115 | 0.052 | -                 | · -       |
|               | olumbia/Back Room Work     | _       | 960  | 0.013 | 0.0052 | •          |              | 0.354 | 0.052 | -                 | -         |
|               | olumbia/Pole 20 Back Rooi  | m       | 960  | 0.008 | 0.0052 |            | -            | 0.253 | 0.052 |                   | •         |
| 00343 R       | obalo/Pole Near Breaker    | 1       | 960  | 0.017 | 0.0052 |            |              | 0.417 | 0.052 | -                 |           |
| 00345 R       | obalo/Shelf Inside Bay Doo |         | 960  | 0.007 | 0.0052 | 4          | <u>-</u>     | 0.185 | 0.052 | •                 | -         |
| 00347 T       | ruck Fencline              |         | 912  | 0.005 | 0.0055 | -          | - "          | 0.134 | 0.055 | •                 | ., 👉 🚅    |
| 00349 R       | oadway Corner              |         | 960  | 0.002 | 0.0052 | •          | ( <u>-</u> ' | 0.083 | 0.052 | • •               | • • .     |
|               | ield Blank                 |         | •    | •     |        | Ū          | 0.005        | •     | •     | 0.100             | 0.050     |
|               | ot Blank                   |         |      | -     | -      | U          | 0.005        | • · · | •     | 0.073             | 0.050     |

Table 1.4 Results of the Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics

Based on dry weight

| Parameter:   |                    | %<br>Solids | Le            | ad                     | Cadı          | mium |
|--------------|--------------------|-------------|---------------|------------------------|---------------|------|
| Client ID    | Location           |             | Conc<br>mg/kg | MDL<br>mg/kg           | Conc<br>mg/kg |      |
| B 09889      | Columbia Composite | 97          | 3800          | 37                     | 130           | 5.4  |
| B 09890      | Robalo Composite   | 96          | 2600          | <b>32</b> <sup>-</sup> | 120           | . 24 |
| B 09891      | Robalo Composite   | 97          | 1500          | 6.3                    | 24 -          | 4.6  |
| B 09892      | Norpak Composite   | 98          | 1700          | 6.8                    | 44            | 5.0  |
| B 09894      | Chip 1 - Top       | . 96        | 1000          | 5.6                    | U.            | 4.1  |
| B 09895      | Chip 1 - Bottom    | 96          | 68            | 6.4                    | U             | 4.6  |
| B 09896      | Chip 2 - Top       | 99          | 360:          | 5.8                    | Ü             | 4.2  |
| B 09897      | Chip 2 - Bottom    | - 98        | 48            | 5.3                    | U             | 3.9  |
| B 09898      | Chip 3 - Top       | 97          | 71 ·          | 4.7                    | U             | 3.5  |
| B 02343      | Chip 3 - Bottom    | 98          | 33            | 6.9                    | U,            | 5.1  |
| B 02344      | Chip 4 - Top       | 95          | 100           | 7.4                    | 9.4           | 5.4  |
| B 02345      | Chip 4 - Bottom    | 96          | 22            | 5.4                    | U .           | 3.9  |
| B 02346      | Chip 5 - Top       | 97          | 39            | 5.9                    | U             | 4.3  |
| B 02347      | Chip 5 - Bottom    | 95          | 24            | 8.1                    | U             | 5.9  |
| B 02348      | Chip 6 - Top       | 99          | 190           | 4.4                    | · U           | 3.2  |
| B 02349      | Chip 6 - Bottom    | 98          | 16            | 4.6                    | U             | 3.4  |
| B 02350      | Chip 7 - Top       | 97          | 100           | 7.4                    | Ū             | 5.4  |
| B 02351      | Chip 7 - Bottom    | 97          | · 40          | 6.0                    | Ü             | 4.4  |
| Method Blank |                    | NA          | U             | 7.1                    | Ū             | 5.2  |

#### QA/QC for PCBs

Each air sample was spiked with a solution of tetrachloro-m-xylene and decachlorobiphenyl as surrogates. Percent recoveries ranged from 78 to 152 and are listed in Table 2.1. Twenty-nine out of thirty values were within the advisory QC limits.

Sample 500 was chosen for the matrix spike/matrix spike duplicate (MS/MSD) analyses for the air samples. The percent recoveries were 80 and 83 and are listed in Table 2.2. The relative percent difference (RPD), also listed in Table 2.2, was 3. QC limits are not available for this analysis.

Each dust sample was spiked with a solution of tetrachloro-m-xylene and decachlorobiphenyl as surrogates. Percent recoveries, listed in Table 2.3, ranged from 100 to 117. Both reported values were within the acceptable QC limits. Thirty-six other values were from diluted samples and the percent recovery could not be calculated.

Table 2.1 Results of the Surrogate Recoveries for PCBs in Air WA # 2-262 Cornell Dubilier Electronics

|                  | Percent F         | Recovery |         |
|------------------|-------------------|----------|---------|
| Sample ID        | TCMX              | DCBP"    |         |
| PBLK0606970      | 1 81              | 126      | ، بد در |
| 500              | 91                | 132      |         |
| 500 MS           | 103               | 137      |         |
| 500 MSD          | 79 🛷              | 131      |         |
| 489 <sup>-</sup> | 87                | 130      |         |
| 490              | 87                | 130      |         |
| 491              | , 99 .            | 143      |         |
| 492              | 78                | 114,     |         |
| 493              | 94                | 134      |         |
| 494              | . <sup>2</sup> 87 | 126      |         |
| 495              | 84                | 119      |         |
| 496              | . 88              | 120      | •       |
| 497              | 104               | 137      |         |
| 498              | 103               | 144      |         |
| 499              | 109               | 152 *    | 2       |
|                  |                   |          |         |

TCMX denotes Tetrachloro-m-xylene DCBP denotes Decachlorobiphenyl

|        | • | •  |    | Advisory |
|--------|---|----|----|----------|
|        |   |    |    | QC.      |
|        |   | ξ, |    | Limits   |
| TCMX . |   | *  | •  | 60-150   |
| DCBP   |   |    | ٠. | 60-150   |

2262\DEL\AR\9708\ALL

# Table 2.2 Results of the MS/MSD Analysis for PCB in Air WA # 2-262 Cornell Dubilier Electronics based on dry weight

| ·/. | Sample ID |   | MS<br>Spike<br>Added<br>(ng) |     |    | MSD<br>Spike<br>Added<br>(ng) | MSD<br>Conc<br>(ng) |    | RPD<br>% |
|-----|-----------|---|------------------------------|-----|----|-------------------------------|---------------------|----|----------|
| •   | 500       | U | 1000                         | 826 | 83 | 1000                          | 804                 | 80 | 3        |

Table 2.3 Results of the Surrogate Recoveries for PCBs in Dust
WA # 2-262 Cornell Dubilier Electronics

|    | . , .        | Perce | ent Recov | ery        |             |
|----|--------------|-------|-----------|------------|-------------|
|    | Sample ID    | TCMX  |           | DCBP       | ¥.          |
|    | SBLK06119701 | 100   | •         | 117        | <del></del> |
|    | 09889 A      | D     |           | D          |             |
|    | 09890 A      | D     |           | . D ,      |             |
|    | 09891 A      | D     |           | D          |             |
|    | 09892 A      | D     |           | D.         |             |
|    | 09894 A      | D 🗀   |           | D.         |             |
|    | 09895 A      | D.    | ,         | D.         | <i>i</i> .  |
|    | 9896 A       | D     |           | D          |             |
|    | 09897 A      | . D   |           | D.         |             |
|    | 09898 A      | , D   |           | D          |             |
|    | 02343 A      | D     |           | ' <b>D</b> | , .         |
|    | 02344 A      | D     |           | D .        | ٠,          |
|    | 02345 A      | D     |           | Ð          |             |
|    | 02346 A      | D     | , .       | D.         |             |
|    | 02347 A      | D     |           | D          |             |
|    | 02348 A      | D D   |           | Ď          | ` .         |
|    | 02349 A      | D     | •         | D          |             |
|    | 02350 B      | D     |           | D.         | ς.          |
| ٠, | 02351 A      | D     |           | D          |             |
|    |              |       |           |            |             |

TCMX denotes Tetrachloro-m-xylene DCBP denotes Decachlorobiphenyl

|   |              |     |    |   |   | Advisory<br>QC   |
|---|--------------|-----|----|---|---|------------------|
|   |              | , , |    |   | 1 | Limits           |
| į | TCMX<br>DCBP |     | i. | • |   | 60-150<br>60-150 |

#### QA/QC for Lead and Cadmium in Air

QC standards TMMA #1 were used to check the accuracy of the calibration curve. The percent recoveries ranged from 92 to 101 and all recovered concentrations were within the 95% confidence limits. The recoveries are listed in Table 2.4.

A NIST standard was also analyzed. The percent recoveries, listed in Table 2.5, were 95 and 100. The 95 % confidence limits are not available for this analysis.

The percent recoveries of the media spike/media spike duplicate (MS/MSD) analyses, listed in Table 2.6, ranged from 87 to 98. The relative percent differences (RPDs), also listed in Table 2.6, were 2 and 12. All four percent recoveries and both RPDs were within the recommended QC limits.

The percent recoveries of the reagent spike, listed in Table 2.7, were 96 and 103. Both percent recoveries were within the recommended QC limits.

\2262\DEL\AR\9708\REPORT

# Table 2.4 Results of the QC Standard Analysis for Lead and Cadmium (Air ) WA # 2-262 Cornell Dubilier Electronics

| Metal   | Date<br>Analyzed |        | Conc.<br>Rec<br>µg/L | True<br>Value<br>µg/L | 95 %<br>Confidence<br>Interval | % Rec |
|---------|------------------|--------|----------------------|-----------------------|--------------------------------|-------|
| Cadmium | 06/11/97         | TMAA#1 | 4.62                 | 5.00                  | 4.10 - 5.83                    | 92    |
| Lead    | 06/10/97         | TMAA#1 | 50.6                 | 50.0                  | 43.4 - 56.3                    | 101   |

Table 2.5 Results of the Laboratory Control Standard Analysis for Lead and Cadmium (Air WA # 2-262 Cornell Dubilier Electronics

|    | Metal   | Date<br>Analyzed | Quality<br>Control<br>Standard | Conc.<br>Rec<br>µg/Filter | True<br>Value<br>µg/Filter | 95 %<br>Confidence<br>Interval | % Rec |     |
|----|---------|------------------|--------------------------------|---------------------------|----------------------------|--------------------------------|-------|-----|
| ΄. |         |                  |                                |                           |                            |                                |       |     |
|    | Cadmium | 06/11/97         | NIST Std                       | 0.918                     | 0.97                       | NA NA                          | 95    |     |
|    |         | , J              |                                |                           | 2 -                        | •                              | ٠.    | . ' |
|    | Lead    | 06/10/97         | NIST Std                       | 7.45                      | 7.44                       | NA                             | 100   |     |
|    |         |                  |                                |                           |                            |                                |       |     |

Table 2.6 Results of the Media Spike/Media Spike Duplicate (MS/MSD) Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

| Metal   | Conc. | Spiked<br>Spike<br>µg/filter | Dup. | ,     | ed Conc.<br>Dup.<br>µg/filter | % Red<br>Spike<br>ug/filter | Dup. | RPD | Recommo<br>Limi<br>% Rec<br>(Advisory | t RPD |
|---------|-------|------------------------------|------|-------|-------------------------------|-----------------------------|------|-----|---------------------------------------|-------|
| Cadmium | 0.003 | 1.00                         | 1.00 | 0.960 | 0.980                         | 96                          | 98   | 2   | 75-125                                | 20    |
| Lead    | 0.073 | 1.00                         | 1.00 | 1.045 | 0.938                         | 97                          | 87   | 12  | 75-125                                | 20    |

Table 2.7 Results of the Reagent Blank Spike Analysis for Lead and Cadmium (Air)
WA # 2-262 Cornell Dubilier Electronics

| Metal   | Reagent<br>Spiked<br>Conc<br>µg/L | Reagent<br>Blank<br>Conc<br>ug/L | Reagent<br>Rec<br>Conc<br>ug/L | % Rec | Recommended Limit  (Advisory Only) |  |
|---------|-----------------------------------|----------------------------------|--------------------------------|-------|------------------------------------|--|
| Cadmium | 40                                | 0.04                             | 38.3                           | 96    | 75-125                             |  |
| Lead    | 40                                | 0.2                              | 41.5                           | 103   | 75-125                             |  |

#### QA/QC for Lead and Cadmium in Dust

The percent recoveries of the laboratory control standard, listed in Table 2.8, were 92 and 96. Both percent recoveries were within the recommended QC limits.

Sample B 09889 was chosen for the duplicate analysis. The relative percent differences, listed in Table 2.9. were 1 and 14 and both results were within the acceptable QC limits.

The percent recovery of the matrix spike (MS) analysis, listed in Table 2.10, ranged was 92. One other percent recovery was not calculated because of matrix interference. The calculated percent recovery was within the acceptable QC limits.

#### Table 2.8 Results of the Analysis of the Laboratory Control Standard for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics

| Metal   | Spiked<br>Conc<br>mg/kg | Rec<br>Conc<br>mg/kg | % Rec | Recommended<br>Limit |  |  |
|---------|-------------------------|----------------------|-------|----------------------|--|--|
| Cadmium | 50                      | 46                   | 92    | 80-120               |  |  |
| Lead    | 50                      | 48                   | 96 🗥  | 80-120               |  |  |

2262\DEL\AR\9708\ORIG

Table 2.9 Results of the Duplicate Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics (based on dry weight)

| Metal   | Sample ID |         | Duplicate<br>Analysis<br>mg/kg | RPD   | QC<br>Limit |
|---------|-----------|---------|--------------------------------|-------|-------------|
| Cadmium | B 09889   | 133.92  | 153.36                         | 14    | 20          |
| Lead    | B 09889   | 3765.97 | 3735.30                        | · 1 . | 20          |

# Table 2.10 Results of the Matrix Spike Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics (based on dry weight)

| Metal   | Sample ID | Sample<br>Conc<br>mg/kg | Spike<br>Conc<br>mg/kg | Rec<br>Conc<br>mg/kg | %<br>Rec | QC<br>Limits |
|---------|-----------|-------------------------|------------------------|----------------------|----------|--------------|
| Cadmium | B 09889   | 133.92                  | 7.24                   | 107                  | NC:      | 80-120       |
| Lead    | B 09889   | 3765.97                 | 98.82                  | 3857.02              | 92       | 80-120       |

2262\DEL\AR\9708\ORIG



Roy F. Weston, Inc.
GSA Rantan Depot
Building 209 Annex (Bay F)
2890 Woodbridge Avenue
Edison, New Jersey 08837-3679
908-321-4200 • Fax 908-494-402

Kiber Environmental Services 3786 Dekalb Technology Parkway, N.E. Atlanta, GA 30340

Attn: Denise Ward

12 June 16

Project # 3347-142-001-2262 Cornell Dubilier

As per Weston REAC Purchase Order number 81306, please analyze samples according to the following parameters:

| Analysis/Method                                      | Matrix         | /# of   |  |  |  |
|------------------------------------------------------|----------------|---------|--|--|--|
|                                                      |                | samples |  |  |  |
| Pb & Cd/ SW-846-6010 or Series 7000                  | Concrete Chips | 18      |  |  |  |
| Data package: see attached Deliverables Requirements |                | -       |  |  |  |

Samples are expected to arrive at your laboratory on June 13,1997. All applicable QA/QC analysis as per method, will be performed on our sample matrix. Preliminary sample result tables plus a signed copy of our Chain of Custody must be faxed to REAC 7 business days after receipt of the samples. The complete data package is due 21 business days after receipt of the samples. The complete data package must include all items on the deliverables checklist.

Please submit all reports and technical questions concerning this project to John Johnson at (908) 321-4248 or fax to (908) 494-4020. Any contractual question, please call Cynthia Davison at (908) 321-4296. Thank you

Sincerely,

CC.

Misty Barriey LOW

Data Validation and Report Writing Group Leader

Roy F. Weston, Inc. / REAC Project

MB:jj Attachments

R. Singhvi

S. Burchette

2262\non\mem\9706\sub\2262Con1

V. Kansal

Subcontracting File

Y. Exume

C. Davison

K. Robbins

M. Barkley

ro6.06.51

(908) 321-4200

REAC.

on, NJ

EPA Contract 68-C4-0022

CH. JF CUSTODY RECORD

DUBLIER. CODMELL! Project Name:

182-001-2262-01 J3347-Project Number:\_

K. PUBBINS Phone: 321-4200 **RFW Contact**:

08342

SHEET NO.\_OF\_

**Analyses Requested** Sample Identification

| ノいじじうて、 |            | Sample lui           | Riimire  | auon           | _                 |              | <u>`</u> _`_ | Alluly   | aca itoque | <u> </u> |                 |
|---------|------------|----------------------|----------|----------------|-------------------|--------------|--------------|----------|------------|----------|-----------------|
| REAC#   | Sample No. | Sampling Location    | Matrix   | Date Collected | # of Bottles      | Container/Pr | reservative  | P6 Cd    | Volume (1) |          |                 |
| 501     |            | Cin MOIA / CAR TIMES | H        | 6/5/97         | 1                 | CASSETTE     | NHRIAK       |          | 960        |          |                 |
| 302     |            | CI MENS WHELF MIN    | 4        | W5/97          | 7                 |              |              |          | 960        |          |                 |
| 503     | 00335      | ru. mar 1/370 ME     | A        | 6/5/97         |                   |              |              | <b>V</b> | 960        |          |                 |
| TOY     |            | (ULVMBA) BY BY BY    | A        | 6/5/97         |                   |              |              | V        | 960        |          | V/              |
| ) (O) S | 00339      | CCLIMBIA WIRE BONG   | A        | 6/5/A7         | L. L.             | )            |              | レ        | 960        |          |                 |
| 506     | 00341      | COLUMBIA BREKAIOM    | A        | 6/5/97         | - (               | 1 2 1 1      |              |          | 960        |          | $1 \rightarrow$ |
| 507     | 00343      | ROBALO PRESIDENCE    | A        | 6/577          | 1                 |              |              | V        | 960        |          |                 |
| . 508   | 00345      | ROCAL BAN FROM       | A        | 6/5/97         | 1                 |              | ~            |          | 960        | /4       |                 |
| 509     | 00347      | TRUCK FENCIONS       | A        | 6/5/97         | 1 -               |              | New Williams |          | 912        |          |                 |
| 510     | 00349      | RUADWAY COMNER       | A        | 6/5/91         | 1                 |              |              | V        | 960        |          | <b>\</b>        |
| 5//     | 09553      | FIELD BLANK          | A        | 6/5/97         | 1                 |              | 3 4          | V        | 0          | / ~ 1    | 1               |
| 512     | 09555      | LOT/MS/MSO           | A        | 6/5/97         | 3                 | <u> </u>     |              |          | 0          |          |                 |
| ~       | ì          |                      |          |                |                   | 4            |              |          |            |          |                 |
|         |            |                      |          |                |                   |              |              | -1       | <u> </u>   |          | <del> </del>    |
|         |            |                      |          |                |                   |              |              |          |            |          |                 |
|         |            |                      |          |                |                   | <b>K</b>     |              |          |            |          |                 |
|         |            |                      |          |                |                   | 13           |              | <b></b>  |            | 12.00    |                 |
|         |            |                      | <u> </u> |                | 1                 | $V \neq$     |              |          |            |          | 4               |
| -       | -          |                      |          |                |                   | 7_/_         | <del></del>  |          |            |          |                 |
|         |            |                      |          | <u> </u>       | ial Instructions: | $1 - \ell$   |              | *        | <u> </u>   |          |                 |

Matrix: SD -

DS -

Sediment **Drum Solids** 

**Drum Liquids** 

GW -

SW -

Potable Water

Groundwater Surface Water

Water Oil

(L)-Litters

ms/msid-madia SAKE/MEDIA. SPIKE PURICATE

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF **CUSTODY#** 

| ſ | Items/Reason  | Relinquished By | Date              | Received By | Date  | Time   | items/Reason | Relinquished By | Date | Received By    | Date   | Time.    |
|---|---------------|-----------------|-------------------|-------------|-------|--------|--------------|-----------------|------|----------------|--------|----------|
| ŀ |               | the Set         | 6/6/2             | YEXUME      | 6/491 | 10:30  | ALLANALYSIS  | Y. EKUME        | 4487 | HornesKelinger | 6/6/47 | 730      |
| 1 | -ICC//IVM(47) | 700(0)          | <del>** * /</del> |             |       |        | \$ 1 Table   |                 | 1    | ,              | , , ,  |          |
| ł |               |                 |                   |             | 7.    | -      |              |                 |      |                |        |          |
| ł |               |                 |                   |             |       | , *= , | *            |                 |      | · ·            |        | <u> </u> |
| ŀ |               |                 | <del></del>       |             |       |        |              |                 |      |                |        | 8/94     |

FORM #4

| REAC, Jaon, NJ            |        |
|---------------------------|--------|
| (908) 321-4200            |        |
| <b>FPA Contract 68-C4</b> | 4-0022 |

### OF CUSTODY RECORD

Project Name: CORNELL Project Number: 03347-142-001-2262-01 RFW Contact: ( POBBLYS Phone: 321-4200

No: 08343

SHEET NO. OF

| 560697 |                                       | Sample Ide           | entifica | ation          |                  |                        | Analy    | Analyses Requested |           |                   |  |  |
|--------|---------------------------------------|----------------------|----------|----------------|------------------|------------------------|----------|--------------------|-----------|-------------------|--|--|
| REAC#  | Sample-No.                            | Sampling Location    | Matrix   | Date Collected | # of Bottles     | Container/Preservative | PCBS     | VOLUME (L)         | \         | 100 mg            |  |  |
| 450    | CO33.7                                | (ii main Sterence    | · A      | 1/5/91         | (                | WHIRLAND NOWS          | V        | 960                |           |                   |  |  |
| 430    | CO334                                 | CILL MANA WIRE MEA   |          |                | (                |                        | · V      | 960                |           | <u> </u>          |  |  |
| 421    | ८८/३५%                                | (ce moul many smart  |          |                |                  |                        |          | 960                |           |                   |  |  |
| 472    | 00338                                 | (climbit By Branchun |          |                |                  |                        | ~        | 1080               |           |                   |  |  |
| 443    | <i>०</i> ८३५०                         | COLUMBIN MERK BORNIN |          |                |                  |                        | \<br>\   | 960                |           |                   |  |  |
| 497    | 003/2                                 | COLLING A BOLFEUM    |          |                |                  |                        | <b>✓</b> | 960                |           |                   |  |  |
| 495    | <i>0</i> 0344                         | RABAW/ PREMINE       |          |                | - [              |                        |          | 960                |           | $\langle \rangle$ |  |  |
| 491    | 00346                                 | POBILO/SHELF NIE     |          |                |                  |                        |          | 90                 | VT        | X                 |  |  |
| 497    | Ø348                                  | TACK FENCELINE       |          |                |                  |                        | /        | 960                |           |                   |  |  |
| 498    | 00300                                 | POROVAY CORNER       |          |                |                  |                        | V        | 960                | ", /"   . | \                 |  |  |
| 494    | 09554                                 | FIRES BLANK          | 1        |                | l ·              |                        | V        | 0                  |           |                   |  |  |
| 500    | 09556                                 | LUT/ms/msD           | V        | 4              | 3                |                        | /        | 0                  | /         |                   |  |  |
|        |                                       |                      |          |                | ~: \             |                        |          |                    |           |                   |  |  |
|        |                                       |                      |          |                |                  |                        |          |                    | ·         |                   |  |  |
|        |                                       |                      |          |                |                  |                        |          |                    |           |                   |  |  |
| ·      |                                       | \ \\.                | -        |                |                  |                        |          | · · · · · ·        | <u> </u>  |                   |  |  |
|        | <u> </u>                              |                      |          |                | 1                |                        |          |                    |           |                   |  |  |
|        |                                       |                      |          |                |                  |                        |          |                    |           |                   |  |  |
|        | · · · · · · · · · · · · · · · · · · · |                      |          |                | // -             |                        | ~        |                    |           |                   |  |  |
| itrix: |                                       |                      |          |                | al Instructions: |                        |          | , ,                |           | 1 × ×             |  |  |

ms/msD - MEDIA SAKE Sediment **Potable Water** Water DS -**Drum Solids** GW -Groundwater **Drum Liquids** Surface Water Oil MEDIA SPRKE PUPLICATE Other Sludge

FOR SUBCONTRACTING USE ONLY

**FROM CHAIN OF CUSTODY#** 

| Items/Reason | Relinquished By | Date   | Received By | Date   | Time  | items/Reason | Relinquished By | Date  | Received By | Date | Time  |
|--------------|-----------------|--------|-------------|--------|-------|--------------|-----------------|-------|-------------|------|-------|
| ALL ANOWSIS  | Milalin         | 6/6/97 | Y. EXYME    | 6/6/97 | 10:30 | ALL ANDLY SU | YEXUME          | 6/497 | H. Nohan    | 96/7 | 2:30/ |
|              |                 | 1      |             |        | •     |              |                 |       |             |      |       |
|              |                 |        |             | , i    | •     |              |                 |       | . 1         |      |       |
| •            |                 |        |             |        |       |              |                 |       |             |      | 7     |
|              | 1.8             |        |             |        |       |              |                 |       |             |      |       |
| FORM #4      | -               | -      |             | Λ.     |       |              |                 |       |             |      | 8/94  |

REAC, son, NJ (908) 321-4200 EPA Contract 68-C4-0022 Project Name: CORNELL OF CUSTODY RECORD

Project Number <u>03347</u>

RFW Contact: Ken Robbins

03968 No:

SHEET NO. OF

706014-2552

|             | <b>.</b>    | Sample Ide            | ·                                                | Date Collected                          | # of Bottles                                     | Container/Preservative                  | Pb        | Cd                                               | 7                                     |
|-------------|-------------|-----------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------|-----------|--------------------------------------------------|---------------------------------------|
| AC#         | Sample No.  | Sampling Location     | Matrix                                           |                                         | P OI BOULES                                      |                                         |           | 1 9                                              | <del></del>                           |
|             |             | O 14M bia Compression |                                                  | 6/9/97                                  |                                                  | 8-03 Poly/Ice                           | · · · · · |                                                  | <del> </del>                          |
| 2           | B09890      | Robalo Composite      |                                                  |                                         | *                                                | 01                                      |           |                                                  |                                       |
| 3           | 309891      | Robalo Composito      |                                                  |                                         | ' '                                              |                                         | ·         |                                                  | /                                     |
| 4           | 209 292     | Words Kombosite       | 7                                                |                                         |                                                  | <b>Y</b> /                              | 1         |                                                  | $\perp L$                             |
| <del></del> | 809 894     |                       | X-2                                              |                                         |                                                  | 407 Hass Ice                            |           |                                                  |                                       |
| 6           | Boacas      | Chipl- Bottom         |                                                  | 8.5                                     |                                                  |                                         |           |                                                  | 7                                     |
| 1           | R09 99 6    | Chihz- Tob            | -                                                |                                         |                                                  |                                         | V         |                                                  | 17                                    |
| <u></u>     | 804846      | Chiba Botton          |                                                  |                                         |                                                  |                                         |           |                                                  | 7                                     |
| 8           | 809 87 1    |                       | -                                                |                                         | <del>                                     </del> | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |           | 1 / 1 X                                          | 1                                     |
| <u> </u>    | B09 89 8    | Chip3- TOP            | -                                                |                                         |                                                  |                                         |           |                                                  | 1                                     |
| 10          | BOZ343      | chib3-Bollom          | 1                                                |                                         |                                                  |                                         |           |                                                  | <del>}</del>                          |
| 11          | B02344      | Chipa- lop            | 7                                                |                                         | 2                                                |                                         |           | <del>                                     </del> |                                       |
| 12          | B02345      | Chib4 Bottom          |                                                  |                                         |                                                  |                                         |           |                                                  |                                       |
| /3          | B02346      | thip 5- Tob           |                                                  | * * * * * * * * * * * * * * * * * * * * |                                                  |                                         |           |                                                  | $\perp \lambda$                       |
| 14          | B02747      | thinks- Bottom        | 1.5 4                                            |                                         |                                                  |                                         |           |                                                  | 1                                     |
| K           | RA2 348     | thibbs. Tob           |                                                  |                                         |                                                  |                                         |           |                                                  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| - 47        | 102 TA      | thilb 6- bottem       |                                                  |                                         |                                                  | W                                       |           |                                                  |                                       |
| 17          | MO2350      | Chib7- TOB            |                                                  |                                         |                                                  | B2-02 Gloss Ice                         |           |                                                  |                                       |
| 18          |             | chib7- Bottom         | 14                                               | 1 1                                     | 1.6                                              |                                         | 1         | 1 _ /                                            | 1                                     |
| 18          | MO232 1     | 11161- Pollery        | <del>                                     </del> | M                                       | <del>                                     </del> |                                         |           | MT                                               | 1                                     |
|             | <del></del> |                       |                                                  |                                         | <del>                                     </del> |                                         |           |                                                  | 1                                     |
| ix:         | <u> </u>    | <u> </u>              | <u> </u>                                         | <u> </u>                                | ial Instructions:                                |                                         |           |                                                  |                                       |

**Drum Liquids** 

Surface Water Sludge

X-1- Vacuum Dust X-2- Concrete Chip Dust

Pacis AT 6.0°C

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF custody # 08400

| Γ | Items/Reason                          | Relinquished By | Date    | Received By | Date   | Time | Items/Reason | Relinquished By | Date      | Received By | Date | Time |
|---|---------------------------------------|-----------------|---------|-------------|--------|------|--------------|-----------------|-----------|-------------|------|------|
| k | +11/Analogic                          | M.Tres beboils  | 6/12/17 | Dura        | 1/3/97 | 0930 |              |                 |           |             | , ·  |      |
| 1 | · · · · · · · · · · · · · · · · · · · |                 | 7-7-1   |             |        |      |              |                 |           |             |      |      |
| - |                                       |                 |         |             |        | *    |              |                 |           |             |      |      |
| t |                                       |                 |         |             |        |      |              |                 |           |             | . `  |      |
| ŀ | -1                                    |                 |         |             | ı      |      |              |                 | <u> L</u> |             |      |      |

FORM #4

| REAC,              | on, NJ۔    | l s     |
|--------------------|------------|---------|
| $(908) 32^{\circ}$ | 1-4200     |         |
| <b>EPA</b> Con     | tract 68-0 | C4-0022 |

# CHA JF CUSTODY RECORD

Project Name: 135 Nell Desilior Project Number: 03347 - 142-601-2262-01

No:

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF

**CUSTODY#** 

08400

REW Contact: K. Rubbins Phone: 4198

SHEET NO. 1 OF

| 611197 | • ` `      | Sample Id          | entifica     | ation          | · .              | <u> </u>               | Analyses Requested |                                       |     |  |  |  |
|--------|------------|--------------------|--------------|----------------|------------------|------------------------|--------------------|---------------------------------------|-----|--|--|--|
| REAC # | Sample No. | Sampling Location  | Matrix       | Date Collected | # of Bottles     | Container/Preservative | PCBS               | APb, CO 1                             |     |  |  |  |
| 723    | 078594B    | Containe ( post.   | X(I)         | 6/9/97         | 1                | glass for / None       | V                  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |     |  |  |  |
| 764    | 01890AB    | Rebuta Comparite   | X (D         | 6/9/97         | 7                |                        | (                  |                                       | . / |  |  |  |
| 725    | 07391AB    | Reta lo Campacilis | カリ           |                |                  |                        |                    |                                       |     |  |  |  |
| 76     | 01892AB    | Mospellumo de      | X O          |                |                  |                        |                    |                                       |     |  |  |  |
| 727    | 8533 1830  | chiplitus          | XQ           |                | <b> </b>         |                        |                    |                                       |     |  |  |  |
| 7.28   | 07895 BA   | Chip + Buiton      | хŌ           |                |                  |                        |                    |                                       |     |  |  |  |
|        |            | Chipz tea          | ري لا        |                |                  |                        |                    | 1-11                                  | /   |  |  |  |
| 73.0   | 038338A    | Chip's Button      | X(z)         |                |                  |                        |                    |                                       |     |  |  |  |
|        |            | Chip3 to>          | 70           | <u> </u>       |                  | ``                     | <u> </u>           |                                       |     |  |  |  |
|        |            | chip3.Botton       |              |                | , i              |                        |                    |                                       |     |  |  |  |
| 733    | 053778A    | chip4 top          | <b>y</b> (O) |                |                  |                        |                    |                                       |     |  |  |  |
| 734    | 0-3828     | Chip 4 Batton      | XO           |                |                  |                        | 71                 |                                       |     |  |  |  |
|        |            | chip 5 tep         | <u> २७</u>   |                |                  |                        | ' '                | 1 1 1                                 |     |  |  |  |
| 736    |            | Chip 5 Betton      |              |                |                  |                        |                    |                                       |     |  |  |  |
| 737    | 0234 FUA   | chip6 top          | र छ          |                |                  |                        |                    | 1 1/ 11                               |     |  |  |  |
| 738    | 0234 98A   | Chip & Belton      | х Q .        |                | 1 /              |                        |                    |                                       |     |  |  |  |
| 737    | 05320FY    | Ship 7 top         | <u>(3)</u>   | V              | V                | V                      | V                  | W X                                   |     |  |  |  |
| 740    | 0235144    | Chip 7 Bitten      | 7(3)         | 6/9/99         | (                | glass Jar / None       |                    |                                       | 1   |  |  |  |
|        |            |                    |              |                |                  | <u> </u>               |                    |                                       |     |  |  |  |
| trix:  |            |                    |              | *              | al Instructions: |                        | <del></del>        | <u> </u>                              |     |  |  |  |

**Drum Solids** DS -

Groundwater

SW -Drum Liquids

Surface Water

Sludge

(3) Chip Dust

PCB analysis for Dust Samples

| <b>40</b>      | LA:             |         |             |       |       |              |                 |          |             |      |         |
|----------------|-----------------|---------|-------------|-------|-------|--------------|-----------------|----------|-------------|------|---------|
| Items/Reason   | Relinquished By | Date    | Received By | Date  | Time. | Items/Reason | Relinquished By | Date     | Received By | Date | Time    |
| all /Luxly 5/3 | 1 Kin Rolly     | 6/9/197 | YEXUME      | GULET | 10:00 | ALCANACYSS   |                 | 4(118)   |             |      | 11:00   |
| 18             |                 |         | y, Emy      | RIUST | 1000  | XAT Ph.cd    | Y. FRUME        | 6/11/57  | ol leman    | W175 | 11:00AV |
|                |                 |         |             |       |       |              |                 |          |             |      |         |
|                |                 | -       |             |       |       |              |                 |          |             |      |         |
|                |                 |         |             |       |       | /            |                 | <u> </u> |             |      |         |

FORM #4